Intradermally focused infrared laser pulses: thermal effects at defined tissue depths.

نویسندگان

  • Misbah Huzaira Khan
  • R Kehl Sink
  • Dieter Manstein
  • David Eimerl
  • R Rox Anderson
چکیده

BACKGROUND AND OBJECTIVES To produce controlled, spatially confined thermal effects in dermis. STUDY DESIGNS/MATERIALS AND METHODS A 1 W, 1,500 nm fiber-coupled diode laser was focused with a high numerical aperture (NA) objective to achieve a tight optical focus within the upper dermis of skin held in contact with a glass window. The delivery optics was moved using a computer-controlled translator to generate an array of individual exposure spots. Fresh human facial skin samples were exposed to a range of pulse energies at specific focal depths, and to a range of focal depths at constant pulse energy. Cellular damage was evaluated in frozen sections using nitro-blue tetrazolium chloride (NBTC), a lactate dehydrogenase (LDH) activity stain. Loss of birefringence due to thermal denaturation of collagen was evaluated using cross-polarized light microscopy. The extent of focal thermal injury was compared with a model for photon migration (Monte Carlo Simulation), heat diffusion, and protein denaturation (Arrhenius model). RESULTS Arrays of confined, microscopic intradermal foci of thermal injury were created. At high NA, epidermal damage was avoided without active cooling. Foci of thermal injury were typically 50-150 microm in diameter, elliptical, and at controllable depths from 0 to 550 microm. Both LDH inactivation and extracellular matrix denaturation were achieved. CONCLUSION Spatially confined foci of thermal effects can be achieved by focusing a low-power infrared laser into skin. Size, depth, and density of microscopic, thermal damage foci may be arbitrarily controlled while sparing surrounding tissue. This may offer a new approach for nonablative laser therapy of dermal disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of Localized Hyperthermia by Millisecond Laser Pulses in the Presence of Gold-Gold Sulphide Nanoparticles in a Phantom

Introduction Application of near-infrared absorbing nanostructures can induce hyperthermia, in addition to providing more efficient  photothermal effects. Gold-gold sulfide (GGS) is considered as one of these nanostructures. This study was performed on a tissue-equivalent optical-thermal phantom to determine the temperature profile in the presence and absence of GGS and millisecond pulses of a ...

متن کامل

Theory analysis of wavelength dependence of laser-induced phase explosion of silicon

Wavelength dependence of laser ablation of silicon was investigated with nanosecond ultraviolet, visible, and infrared laser pulses in the irradiance range from 3 1010 to 1 1012 W /cm2. For 266 and 532 nm laser pulses, the depth of laser-produced crater shows a dramatic increase at a laser irradiance threshold of approximately 2 1010 and 4 1011 W /cm2 respectively, above which, large micron-siz...

متن کامل

Thermal interaction of short-pulsed laser focused beams with skin tissues.

Time-dependent thermal interaction is developed in a skin tissue cylinder subjected to the irradiation of a train of short laser pulses. The skin embedded with a small tumor is stratified as three layers: epidermis, dermis and subcutaneous fat with different optical, thermal and physiological properties. The laser beam is focused to the tumor site by an objective lens for thermal therapy. The u...

متن کامل

Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation

We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in-house built prototype device, tightly focused near-infrared laser pulses are used to create optical breakdown in the dermis while leaving the epidermis intact, resulting in lesions due to cavi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lasers in surgery and medicine

دوره 36 4  شماره 

صفحات  -

تاریخ انتشار 2005